Assessments, Preprocessing Effects, and Guidelines for

Andjela Dimitrijevic'?, Alexia Mahlig’, Fanny Dégeilh®, and Benjamin De Leener

Evaluating SynthSeg’s Pediatric Brain Segmentations: Longitudinal Volume

Improved Accuracy

1,2,4

"NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada, Research Center, Ste-Justine Hospital University Centre, Montreal, QC, Canada,
3IRISA UMR 6074, EMPENN ERL U-1228, Université de Rennes, CNRS, Inria, Inserm, Rennes, France, “*Computer Engineering and Software Engineering, Polytechnique Montréal, Montreal, QC, Canada

V 4
« @
& IRISA Clrzia— C2) cuu NeuroPoly POLYTECHSLE
‘ \ LSainteh-Julstine .
e.cen'gn;zir: srﬁiiet:ei-zrn ant X Qe
‘ M P E N N de Montréal
Introduction

% Challenge: Rapid neurodevelopment and frequent motion/contrast artifacts in early-childhood MRI
complicate segmentation [1].

% Gap: SynthSeg (FreeSurfer v7.3.2) [2], an automatic segmentation tool works well in adults, but pediatric
segmentation best practices and how MRI pipelines affect longitudinal consistency are poorly defined.

% Context: Gray matter volume rises steeply in infancy (=1-2 %/month), while white matter myelination
follows a more gradual curve, underscoring expected growth trajectories.

% Aim: Benchmark 18 regions in two longitudinal cohorts; test no-preprocessing (No-prep) vs N4+skull-strip
( ) pipelines + evaluate how individual trajectories align with established neurodevelopmental patterns.

* lllustration for BCP, but both pipelines applied to each dataset
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2. Segmentation Pipelines

3. QC Segmentations & Outlier Removal
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Subject-level Root Mean Squared Deviation Percentage

from Population GAM, by Region & Pipeline Removals
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Fig 1. Regional RMSD (%) from the population GAM, compared between No-prep and Prep pipelines. Boxplots show the distribution of %
deviation. Adjacent annotations show the removal rate (% of initial sessions) and the mean removal age (months). Significance between
pipelines per region is denoted by * (p < 0.05), ** (p < 0.01) and *** (p < 0.001).
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5. Longitudinal Measures of Deviation from the
Population & Other Interactive Figures
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% RMSD % is a single-number summary of how much an
iIndividual’'s measured volumes deviate, on average,
from the values the GAM predicts for their age. For
each subject:

1. Residual = Observed — Predicted volume
2. % Residual = 100 x Residual / Predicted
3. RMSD % = Vmean((% Residual)?)

*
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Low RMSD % <=> individual trajectory closem
follows population-average neurodevelopmental

curve;
% High RMSD % <=> greater departures from the
expected developmental pattern. /
Across 18 regions, the Prep pipeline showed lower
mean RMSD% in 11 regions, indicating modestly
better alignment to the population model.
Largest improvements (Prep vs No-prep):
v/ Inf. lat. ventricle: 7.96 % vs 11.74 %
v Thalamus: 6.14 % vs 6.85 %
v Putamen: 7.18 % vs 7.41 %
v/ Caudate: 7.94 % vs 8.10 %
Regions favoring No-prep (higher RMSD% with
Prep):
v/ Lateral ventricle: 27.29 % vs 26.32 %
v Cerebellum white matter: 9.10 % vs 8.65 %
v CSF:9.26 % vs 8.17 %
Statistical significance
Only 5 regions showed significant Prep vs No-prep
differences (Wilcoxon or t-test, p<0.05):
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Conclusion

* Prep improved alignment (lower mean RMSD %) in 11/18 regions, but performance gains were modest (< 1 % difference in most).

*x QC-based removals occurred primarily in very young infants (= 1 mo), with more Prep removals in 5/8 broad anatomical groups, especially for general CSF, suggesting SynthStrip’s contrast changes

hurt its performance in neonates.

* GAM models of RMSD % versus age show a clear downward trend: residual deviations shrink with increasing age, indicating more stable segmentation in older subjects.
% Next steps: Benchmark SynthSeg against pediatric-focused tools (e.g., iBEAT), include sex as a covariate in developmental models, and develop additional preprocessing or QC strategies tailored

for subjects < 10 months, where current methods underperform.
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